Nanometer-scale ion aggregates in aqueous electrolyte solutions: guanidinium carbonate.

نویسندگان

  • P E Mason
  • G W Neilson
  • Steve R Kline
  • C E Dempsey
  • J W Brady
چکیده

Neutron diffraction with isotopic substitution (NDIS) experiments and molecular dynamics (MD) simulations have been used to characterize the structure of aqueous guanidinium carbonate (Gdm2CO3) solutions. The MD simulations found very strong hetero-ion pairing in Gdm2CO3 solution and were used to determine the best structural experiment to demonstrate this ion pairing. The NDIS experiments confirm the most significant feature of the MD simulation, which is the existence of strong hetero-ion pairing between the Gdm+ and CO3(2-) ions. The neutron structural data also support the most interesting feature of the MD simulation, that the hetero-ion pairing is sufficiently strong as to lead to nanometer-scale aggregation of the ions. The presence of such clustering on the nanometer length scale was then confirmed using small-angle neutron scattering experiments. Taken together, the experiment and simulation suggest a molecular-level explanation for the contrasting denaturant properties of guanidinium salts in solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Solubility of CO2 in the Solution of Aqueous K2CO3 Using Wilson-NRF Model

Hot potassium carbonate (PC) solution in comparison with amine solution had a decreased energy of regeneration and a high chemical solubility of . To present vapor and liquid equation (VLE) of this system and predict  solubility, the ion specific non-electrolyte Wilson-NRF local composition model (isNWN) was used in this study; the framework of this model was molecular. Therefore, it was suitab...

متن کامل

Molecular insights in aqueous systems: from electrolyte solutions to aqueous nanoscale interfaces

The unique structure and dynamics of the water hydrogen (H)-bond network enable a multitude of structures and chemical reactions in both bulk solutions and at interfaces. The underlying molecular interactions between water and dissolved electrolytes, organic molecules, and nanoscale interfaces are difficult to study and hence not fully understood, especially when it involves interactions of len...

متن کامل

GENERAL RESEARCH Modeling Electrical Conductivity in Concentrated and Mixed-Solvent Electrolyte Solutions

A comprehensive model has been developed for calculating electrical conductivities of aqueous or mixed-solvent electrolyte systems ranging from dilute solutions to fused salts. The model consists of a correlation for calculating ionic conductivities at infinite dilution as a function of solvent composition and a method for predicting the effect of finite electrolyte concentration. The effect of...

متن کامل

Aqueous guanidinium-carbonate interactions by molecular dynamics and neutron scattering: relevance to ion-protein interactions.

Guanidinium carbonate was used in this study as a simple proxy for the biologically relevant arginine-carbonate interactions in water. Molecular dynamics (MD) simulations of guanidinium carbonate were performed with nonpolarizible water using two implementations of the ion force fields. In the first, the ions had full charges, while in the second, the ions had reduced charges in order to effect...

متن کامل

Molecular Distribution Behavior of Cyanine Dyes in Aqueous Solution

The molecular distribution of the cyanine dye (5-chloro-2-[3-[5-chloro-3-(4-sulfobutyl)-2(3H)benzothiazolylidine]-1-propenyl]-3-(4-sulfobutyl)-benzothiazolium hydroxide triethylamine salt, NK-3796) in aqueous solution was investigated using absorption and emission spectroscopy. Dimers of the dye are formed in concentrated solutions, while monomers dominate more diluted solutions. J aggregates a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 27  شماره 

صفحات  -

تاریخ انتشار 2006